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Perturbative Quantum Chromodynamics (pQCD) predicts that the small-
x gluons in the hadron wavefunction should form a Color Glass Condensate
(CGC), which has universal properties, which are the same for nucleon or
nuclei. Making use of the results in Ref. [1], we study the behaviour of the
anomalous dimension in the saturation models as a function of the photon
virtuality and of the scaling variable rQs, since the main difference among
the known parameterizations are characterized by this quantity.

PACS numbers: 12.38.-t, 13.60.Hb, 25.75.Nq

1. Introduction

Signals of parton saturation have already been observed both in ep deep
inelastic scattering at HERA and in dAu collisions at RHIC. As the satu-
ration scale in HERA and RHIC are similar, we can check the universality
property of the saturation physics in the gluon evolution in the target wave-
function, as claimed in the Color Glass Condensate formalism [2]. In other
words, the gluon evolution in the nucleon or nucleus should be the same. In
[1] we have showed that a small modification in the anomalous dimension
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proposed in [3], is able to describe both sets of data: HERA and RHIC.
This can be an important signature of saturation physics.

In the first part of this note we will give some explanation about the
differences among saturation models. In the second part we will compare
the saturation models in the forward dipole cross section. Next, we will
present how the anomalous dimension evolves with the scaling variable rQs

and with the photon virtuality.

2. Saturation models

Several models for the forward dipole cross section have been used in
the literature in order to fit the HERA and RHIC data. (To see how the
observables measured are related with these models, see for example [1].)
In particular, the phenomenological models, for example, from Refs. [4, 5]
have been proposed in order to describe the HERA data, while those from
Refs. [3, 6] have been able to describe the dAu RHIC data. Usually, in these
models the function N has been modeled in terms of a simple Glauber-like
formula

N (x, r) = 1 − exp

[

−1

4
(r2Q2

s(x))γ(x,r2)
]

, (2.1)

where γ is the anomalous dimension of the target gluon distribution. The
main difference among these models comes from the predicted behaviour
for the anomalous dimension (for a detailed comparison among them, see
Ref. [7]), where the form of anomalous dimension is constructed considering
known anlalytical solutions to the BFKL equation. In this letter we only
present the form of the anomalous dimension given by the parameterization
in Ref. [3] (which we have called by DHJ model):

γ(Y, r2) = γs + ∆γ(Y, r2) (2.2)

where

∆γ(Y, r2) = (1 − γs)
| log 1

r2Q2

T

|
λY + | log 1

r2Q2

T

| + d
√

Y
, (2.3)

with QT = Qs(Y ) a typical hard scale in the process, λ = 0.3 and d = 1.2.
γs = 0.63 is the anomalous dimension for BFKL evolution with saturation
boundary condition [8].

3. Results and discussion

We start with a comparison between the models: GBW [4], IIM [5],
KKT [6], KKTm [9] and DHJ [3] (for a better understanding a check in
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Fig. 1. Forward dipole cross section, as a function of the size dipole.

these references is suggested). In fig. 1 we compare the behaviour for the
forward amplitude N as a function of the squared dipole size. The BK line
correspond to a numerical solution of the BK equation with no-dependence
in impact parameter [10]. The behaviour of the curves IIM, KKT and GBW
we have already discussed in [7].

As already said before, the main difference between these parameteri-
zations is the anomalous dimension. The difference between them can be
demonstrated studying the Q2 behaviour of the effective anomalous dimen-

sion, defined by γeff = d lnN (rQs,Y )
d ln(r2Q2

s/4) . In fig. 2, is shown γeff as a function

of the scaling variable rQs (a) and the virtuality Q2 (b), using the average
dipole size as r = 2/Q. We see that, while the GBW model presents a
fast convergence to the DGLAP anomalous dimension at large Q2, the IIM
parameterization has a mild growth with virtuality, converging to γ ≈ 0.85
at large Q2. The KKTm and IIM parameterizations are similar at large
Q2, but differ at small virtualities, with the KKTm one predicting a smaller
value. On the other hand, the predictions of the DHJ and GKMN param-
eterizations are similar at small Q2 and differ at large virtualities. Here
is convenient to remember that GKMN line, represents the modification
in DHJ model. We have assumed that the QT is a constant factor, like
QT = Q0 = 1 GeV, i. e. that the typical scale is energy independent. As
seen in Ref. [1], with this modification our prediction agree with experi-
mental data. As a last check, in this reference, we have checked that the
RHIC data are still well reproduced after these modications.

As a summary, in this letter we have analyzed current parameterizations
for the dipole scattering amplitude which are able to describe separately the
ep HERA and dAu RHIC data as well the parameterization in [1] that is
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Fig. 2. (a) The effective anomalous dimension as a function of the scaling variable

rQs and (b) the Q2 behaviour, at x = 3 × 10−4.

able to describe both sets of data.
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